Hypermodern Python Cookiecutter

Claudio Jolowicz

CONTENTS

1	Quickstart Guide	1
2	User Guide	5
3	Contributor Guide	39
4	Contributors	43
5	Contributor Covenant Code of Conduct	45
6	MIT License	49
7	Usage	51
8	Features	53
9	FAQ	55

CHAPTER

ONE

QUICKSTART GUIDE

1.1 Requirements

Install Cookiecutter:

```
$ pipx install cookiecutter
```

Install Poetry by downloading and running get-poetry.py:

```
$ python get-poetry.py
```

Install Nox:

```
$ pipx install nox
```

pipx is preferred, but you can also install with pip install --user.

It is recommended to set up Python 3.6, 3.7, and 3.8 using pyenv.

1.2 Creating a project

Generate a Python project:

```
$ cookiecutter gh:cjolowicz/cookiecutter-hypermodern-python \
   --checkout="2020.5.15"
```

Change to the root directory of your new project, and create a Git repository:

```
$ git init
$ git add .
$ git commit
```

1.3 Running

Run the command-line interface from the source tree:

```
$ poetry install
$ poetry run project>
```

Run an interactive Python session:

```
$ poetry install
$ poetry run python
```

1.4 Testing

Run the full test suite:

```
$ nox
```

List the available Nox sessions:

```
$ nox --list-sessions
```

Install the pre-commit hooks:

```
$ nox -s pre-commit -- install
```

1.5 Continuous Integration

1.5.1 GitHub

- 1. Sign up at GitHub.
- 2. Create an empty repository for your project.
- 3. Follow the instructions to push an existing repository from the command line.

1.5.2 PyPI

- 1. Sign up at PyPI.
- 2. Go to the Account Settings on PyPI, generate an API token, and copy it.
- 3. Go to the repository settings on GitHub, and add a secret named PYPI_TOKEN with the token you just copied.

1.5.3 TestPyPI

- 1. Sign up at TestPyPI.
- 2. Go to the Account Settings on TestPyPI, generate an API token, and copy it.
- 3. Go to the repository settings on GitHub, and add a secret named TEST_PYPI_TOKEN with the token you just copied.

1.5.4 Codecov

- 1. Sign up at Codecov.
- 2. Install their GitHub app.

1.5.5 Dependabot

- 1. Sign up at Dependabot.
- 2. Install their GitHub app.

1.5.6 Read the Docs

- 1. Sign up at Read the Docs.
- 2. Import your GitHub repository, using the button Import a Project.
- 3. Install the GitHub webhook, using the button *Add integration* on the *Integrations* tab in the *Admin* section of your project on Read the Docs.

1.6 Releasing

- 1. Bump the version using poetry version. Push to GitHub.
- 2. Publish a GitHub Release.
- 3. GitHub Action triggers the PyPI upload.

Release notes are pre-filled with titles and authors of merged pull requests.

Use labels to group the pull requests into sections:

Pull Request Label	Section in Release Notes
breaking	Breaking Changes
enhancement	Features
removal	Removals and Deprecations
bug	Fixes
performance	Performance
testing	Testing
ci	Continuous Integration
documentation	Documentation
refactoring	Refactoring
style	Style
dependencies	Dependencies

1.6. Releasing 3

Hypermodern Python Cookiecutter

GitHub creates the bug, enhancement, and documentation labels for you. Dependabot creates the dependencies label. Create the remaining labels on the *Issues* tab of your GitHub repository, when you need them.

TWO

USER GUIDE

This is the user guide for the Hypermodern Python Cookiecutter, a Python template based on the Hypermodern Python article series.

If you're in a hurry, check out the quickstart guide and the tutorials.

- Introduction
 - About this project
 - Features
 - Release cadence
- Installation
 - System requirements
 - Getting Python
 - Requirements
- Project creation
 - Creating a project
 - Uploading to GitHub
- Project overview
 - Files and directories
 - The initial package
 - The test suite
 - Documentation
- Packaging
 - The pyproject.toml file
 - Version constraints
 - The lock file
 - Dependencies
- Using Poetry
 - Managing dependencies

- Installing the package for development
- Managing environments
- Running commands
- Building and distributing the package
- Installing the package
- Using Nox
 - Running sessions
 - Overview of Nox sessions
 - The docs session
 - The mypy session
 - The pre-commit session
 - The safety session
 - The tests session
 - The typeguard session
 - The xdoctest session
 - Using Poetry inside Nox sessions
- Linting with pre-commit
 - Using pre-commit
 - Overview of pre-commit hooks
 - The Black hook
 - The Prettier hook
 - The Flake8 hook
 - The reorder-python-imports hook
 - Hooks from pre-commit-hooks
- Linting with Flake8
 - Overview of available plugins
 - pyflakes
 - pycodestyle
 - pep8-naming
 - pydocstyle and flake8-docstrings
 - flake8-rst-docstrings
 - flake8-bugbear
 - mccabe
 - darglint
 - Bandit

- Code coverage with Coverage.py
- Type-checking with mypy
- External services
 - **−** *PyPI*
 - TestPyPI
 - Codecov
 - Dependabot
 - Read the Docs
- GitHub Actions workflows
 - Overview of workflows
 - Secrets
 - Constraints file
 - The Tests workflow
 - The Coverage workflow
 - The Docs workflow
 - The Release Drafter workflow
 - The Release workflow
 - The TestPyPI workflow
- Tutorials
 - How to test your project
 - How to run your code
 - How to make code changes
 - How to push code changes
 - How to open a pull request
 - How to accept a pull request
 - How to make a release
- The Hypermodern Python blog

2.1 Introduction

2.1.1 About this project

The *Hypermodern Python Cookiecutter* is a general-purpose template for Python libraries and applications, released under the MIT license and hosted on GitHub.

The main objective of this project template is to enable current best practices through modern Python tooling. Our goals are to:

· focus on simplicity and minimalism,

2.1. Introduction 7

Hypermodern Python Cookiecutter

- promote code quality through automation, and
- provide reliable and repeatable processes,

all the way from local testing to publishing releases.

Projects are created from the template using Cookiecutter, a project scaffolding tool built on top of the Jinja template engine.

The project template is centered around the following tools:

- Poetry for packaging and dependency management
- · Nox for automation of checks and other development tasks
- · GitHub Actions for continuous integration and delivery

2.1.2 Features

Here is a detailed list of features for this Python template:

- Packaging and dependency management with Poetry
- Test automation with Nox
- · Linting with pre-commit and Flake8
- Continuous integration with GitHub Actions
- Documentation with Sphinx and Read the Docs
- · Automated uploads to PyPI and TestPyPI
- · Automated release notes with Release Drafter
- · Automated dependency updates with Dependabot
- · Code formatting with Black and Prettier
- Testing with pytest
- Code coverage with Coverage.py
- Coverage reporting with Codecov
- · Command-line interface with Click
- Static type-checking with mypy
- · Runtime type-checking with Typeguard
- · Security audit with Bandit and Safety
- · Check documentation examples with xdoctest
- Generate API documentation with autodoc and napoleon

The template supports Python 3.6, 3.7, and 3.8.

2.1.3 Release cadence

The *Hypermodern Python Cookiecutter* has a bimonthly release cadence. Releases happen on the 15th of every other month, starting in January. We use Calendar Versioning with a YYYY.MM.DD versioning scheme. Initial releases may occur more frequently.

The current stable release is 2020.5.15.

2.2 Installation

2.2.1 System requirements

You need a recent Linux, Unix, or Mac system with bash, curl, and git.

On Windows 10, enable the Windows Subsystem for Linux (WSL) and install the Ubuntu 18.04 LTS distribution. Open Ubuntu from the Start Menu, and install additional packages using the following commands:

```
$ sudo apt update
$ sudo apt install -y build-essential curl git libbz2-dev \
libffi-dev liblzma-dev libncurses5-dev libncursesw5-dev \
libreadline-dev libsqlite3-dev libssl-dev llvm make \
python-openssl tk-dev wget xz-utils zliblg-dev
```

The project template should also work natively on Windows. Pull requests to document Windows specifics are welcome!

Note: When working with this template on Windows, configure your text editor or IDE to use only UNIX-style line endings (line feeds).

The project template contains a .gitattributes file which enables end-of-line normalization for your entire working tree. Additionally, the Prettier code formatter converts line endings to line feeds. Windows-style line endings (*CRLF*) should therefore never make it into your Git repository.

Nonetheless, configuring your editor for line feeds is recommended to avoid complaints from the pre-commit hook for Prettier.

2.2.2 Getting Python

It is recommended to use pyenv for installing and managing Python versions. Please refer to the documentation of this project for detailed installation and usage instructions.

Install pyenv like this:

```
$ curl https://pyenv.run | bash
```

Add the following lines to your ~/.bashrc:

```
export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
```

Install the Python build dependencies for your platform, using one of the commands listed in the official instructions.

2.2. Installation 9

Hypermodern Python Cookiecutter

Install the latest point release of every supported Python version. This project template supports Python 3.6, 3.7, and 3.8.

```
$ pyenv install 3.6.10
$ pyenv install 3.7.7
$ pyenv install 3.8.2
```

After creating your project (see *below*), you can make these Python versions accessible in the project directory, using the following command:

```
$ pyenv local 3.8.2 3.7.7 3.6.10
```

The first version listed is the one used when you type plain python. Every version can be used by invoking python<major.minor>. For example, use python3.7 to invoke Python 3.7.

2.2.3 Requirements

Note: It is recommended to use pipx to install Python tools which are not specific to a single project. Please refer to the official documentation for detailed installation and usage instructions. If you decide to skip pipx installation, use pip install with the --user option instead.

You only need three tools to use this template:

- Cookiecutter to create projects from the template,
- · Poetry to manage packaging and dependencies
- · Nox to automate checks and other tasks

Install Cookiecutter using pipx:

```
$ pipx install cookiecutter
```

Install Poetry by downloading and running get-poetry.py:

```
$ python get-poetry.py
```

Install Nox using pipx:

```
$ pipx install nox
```

2.3 Project creation

2.3.1 Creating a project

Create a project from this template by pointing Cookiecutter to its GitHub repository. Use the --checkout option with the current stable release:

```
$ cookiecutter gh:cjolowicz/cookiecutter-hypermodern-python \
   --checkout="2020.5.15"
```

Cookiecutter downloads the template, and asks you a series of questions about project variables, for example, how you wish your project to be named. When you have answered these questions, your project is generated in the current directory, using a subdirectory with the same name as your project.

Here is a complete list of the project variables defined by this template:

Variable Description Example Project name on PyPI and GitHub hypermodern-python project_name package_name Import name of the package hypermodern_python friendly_name Friendly project name Hypermodern Python Katherine Johnson Primary author author E-mail address of the author katherine@example.com email GitHub username of the author github_user katherine Initial project version 0.1.0 version

Table 1: Project variables

Your choices are recorded in the file .cookiecutter.json in the generated project, together with the URL of this Cookiecutter template. Having this JSON file in the project makes it possible later on to update your project with changes from the Cookiecutter template, using tools such as cupper.

In the remainder of this guide, ct> and <package> are used to refer to the project and package names, respectively. By default, their only difference is that the project name uses hyphens (snake case), whereas the package name uses underscores (kebab case).

2.3.2 Uploading to GitHub

This project template is designed for use with GitHub. After generating the project, your next steps are to create a Git repository and upload it to GitHub.

Change to the root directory of your new project, initialize a Git repository, and create a commit for the initial project structure:

```
$ git init
$ git add .
$ git commit
```

Create an empty repository on GitHub, using the project name you chose when you generated the project.

Note: Do not include a README.md, LICENSE, or . gitignore. These files are provided by the project template.

Finally, upload your repository to GitHub. In the commands below, replace <username> by your GitHub username, and <repository> by the name of your GitHub repository.

```
$ git remote add origin git@github.com:<username>/<repository>.git
$ git push --set-upstream origin master
```

Now may be a good time to set up Continuous Integration for your repository. Refer to the section *External services* for detailed instructions.

2.4 Project overview

2.4.1 Files and directories

This section provides an overview of all the files generated for your project.

Let's start with the directory layout:

Table 2: Directories

src/ <package></package>	Python package
tests	Test suite
docs	Documentation
.github/workflows	GitHub Actions workflows

The Python package is located in the src/<package> directory. For more details on these files, refer to the section *The initial package*.

Table 3: Python package

src/ <project>/py.typed</project>	Marker file for PEP 561
<pre>src/<project>/initpy</project></pre>	Package initialization
<pre>src/<pre>ject>/mainpy</pre></pre>	Command-line interface

The test suite is located in the tests directory. For more details on these files, refer to the section *The test suite*.

Table 4: Test suite

tests/initpy	Test package initialization
tests/test_main.py	Test cases formain

The project documentation is written in reStructuredText. The documentation files in the top-level directory are rendered on GitHub:

Table 5: Documentation files (top-level)

README.rst	Project description for GitHub and PyPI
CONTRIBUTING.rst	Contributor Guide
CODE_OF_CONDUCT.rst	Code of Conduct
LICENSE.rst	License

The files in the docs directory are built using *Sphinx* and hosted on *Read the Docs*:

Table 6: Documentation files (Sphinx)

index.rst	Master document
contributing.rst	Contributor Guide (via include)
codeofconduct.rst	Code of Conduct (via include)
license.rst	License (via include)
reference.rst	API reference

The .github/workflows directory contains the GitHub Actions workflows:

coverage.yml The Coverage workflow

docs.yml The Docs workflow

release-drafter.yml The Release Drafter workflow

release.yml The Release workflow

test-pypi.yml The TestPyPI workflow

tests.yml The Tests workflow

Table 7: GitHub Actions workflows

The project contains many configuration files for developer tools. Most of these are located in the top-level directory. The table below lists these files, and links each file to a section with more details.

Coverage.py

Table 8: Configuration files

Dependencies are managed by Poetry and declared in the *pyproject.toml* file. The table below lists some additional files with pinned dependencies. Follow the links for more details on these.

poetry.lock Poetry lock file

docs/requirements.txt Requirements file for Read the Docs

.github/workflows/constraints.txt Constraints file for GitHub Actions workflows

Table 9: Dependency files

2.4.2 The initial package

You can find the initial Python package in your generated project under the src directory:

__init__.py This file declares the directory as a Python package, and contains any package initialization code.

__main__.py The __main__ module defines the entry point for the command-line interface. The command-line interface is implemented using the Click library, and supports --help and --version options. When the package is installed, a script named project> is placed in the Python installation or virtual environment. This allows you to invoke the command-line interface using only the project name:

The command-line interface can also be invoked by specifying a Python interpreter and the package name:

```
$ python -m <package> [<options>]
```

py.typed This is an empty marker file, which declares that your package supports typing and is distributed with its own type information (PEP 561). This allows people using your package to type-check their Python code against it.

2.4.3 The test suite

Tests are written using the pytest testing framework, the de facto standard for testing in Python.

The test suite is located in the tests directory:

```
tests
____init__.py
__test_main.py
```

The test suite is declared as a package, and mirrors the source layout of the package under test. The file test_main.py contains tests for the __main__ module.

Initially, the test suite contains a single test case, checking whether the program exits with a status code of zero. It also provides a test fixture using click.testing.CliRunner, a helper class for invoking the program from within tests.

For details on how to run the test suite, refer to the section *The tests session*.

2.4.4 Documentation

The project documentation is written in reStructuredText and processed by the Sphinx documentation engine.

The top-level directory contains several stand-alone documentation files:

README.rst This file is your main project page and displayed on GitHub and PyPI.

CONTRIBUTING.rst The Contributor Guide explains how other people can contribute to your project.

CODE_OF_CONDUCT.rst The Code of Conduct outlines the behavior expected from participants of your project. It is adapted from the Contributor Covenant, version 2.0.

LICENSE.rst This file contains the text of the MIT license, a simple permissive license.

Note: The files above are also rendered on GitHub and PyPI. Keep them in plain reStructuredText, without Sphinx extensions.

The documentation files in the docs directory are built using Sphinx:

index.rst This is the master document, and serves as the main documentation page. This file also defines the navigation menu, with links to other documentation pages. The Changelog menu entry links to the GitHub Releases page of your project.

contributing.rst This file includes the Contributor Guide from CONTRIBUTING.rst.

codeofconduct.rst This file includes the Code of Conduct from CODE_OF_CONDUCT.rst.

license.rst This file includes the license from LICENSE.rst.

reference.rst The API reference for your project. It is generated from docstrings and type annotations in the source code, using the autodoc and napoleon extensions.

The docs directory contains two more files:

conf.py This Python file contains the Sphinx configuration.

requirements.txt The requirements file pins the build dependencies for the Sphinx documentation. This file is only used on Read the Docs.

The project documentation is built and hosted on *Read the Docs*.

You can also build the documentation locally using Nox, see *The docs session*.

2.5 Packaging

2.5.1 The pyproject.toml file

The configuration file for the Python package is located in the root directory of the project, and named pyproject. toml. It uses the TOML configuration file format, and contains two sections—*tables* in TOML parlance—, specified in PEP 517 and 518:

- The build-system table declares the requirements and the entry point used to build a distribution package for the project. This template uses Poetry as the build system.
- The tool table contains sub-tables where tools can store configuration under their PyPI name. Poetry stores its configuration in the tool.poetry table. Coverage.py stores its configuration in the tool.coverage table.

The tool.poetry table contains the metadata for your package, such as its name, version, and authors, as well as the list of dependencies for the package. Please refer to the Poetry documentation for a detailed description of each configuration key.

2.5.2 Version constraints

Version constraints express which versions of dependencies are compatible with your project. In the case of core dependencies, they are also a part of distribution packages, and as such affect end-users of your package.

For every dependency added to your project, Poetry writes a version constraint to pyproject.toml. Dependencies are kept in two TOML tables:

- tool.poetry.dependencies—for core dependencies
- tool.poetry.dev-dependencies—for development dependencies

By default, version constraints require users to have at least the version that was current when the dependency was added to the project. Users can also upgrade to newer releases of dependencies, as long as the version number does not indicate a breaking change. (According to the Semantic Versioning standard, only major releases may contain breaking changes, once a project has reached version 1.0.0.)

Note: Dependencies are Python packages used by your project, and they come in two types:

• Core dependencies are required by users running your code, and typically consist of third-party libraries imported by your package. When your package is distributed, the package metainfo includes these dependencies, allowing tools like pip to automatically install them alongside your package.

2.5. Packaging 15

• Development dependencies are only required by developers working on your code. Examples are applications used to run tests, check code for style and correctness, or to build documentation. These dependencies are not a part of distribution packages, because users do not require them to run your code.

2.5.3 The lock file

Poetry records the exact version of each direct and indirect dependency in its lock file, named poetry.lock and located in the root directory of the project. The lock file does not affect users of the package, because its contents are not included in distribution packages.

The lock file is useful for a number of reasons:

- It ensures that local checks run in the same environment as on the CI server, making the CI predictable and deterministic.
- When collaborating with other developers, it allows everybody to use the same development environment.
- When deploying an application, the lock file helps you keep production and development environments as similar as possible (dev-prod parity).

For these reasons, the lock file should be kept under source control.

2.5.4 Dependencies

This project template has a core dependency on Click, a library for creating command-line interfaces. The template also comes with various development dependencies. See the table below for an overview of the dependencies of generated projects:

click	Composable command line interface toolkit
coverage	Code coverage measurement for Python
mypy	Optional static typing for Python
pre-commit	A framework for managing and maintaining multi-language pre-commit hooks
pytest	Simple powerful testing with Python
pytest-cov	Pytest plugin for measuring coverage
safety	Checks installed dependencies for known vulnerabilities
sphinx	Python documentation generator
sphinx-autobuild	Watch a Sphinx directory and rebuild the documentation when a change is detected
typeguard	Run-time type checker for Python
xdoctest	A rewrite of the builtin doctest module

Table 10: Dependencies

2.6 Using Poetry

Poetry manages packaging and dependencies for Python projects.

2.6.1 Managing dependencies

Use the command poetry show to see the full list of direct and indirect dependencies of your package:

```
$ poetry show
```

Use the command poetry add to add a dependency for your package:

```
$ poetry add foobar  # for core dependencies
$ poetry add --dev foobar # for development dependencies
```

Use the command poetry remove to remove a dependency from your package:

```
$ poetry remove foobar
```

Use the command poetry update to upgrade the dependency to a new release:

```
$ poetry update foobar
```

To upgrade to a new major release, you normally need to update the version constraint for the dependency, in the pyproject.toml file.

Note: Dependencies in the *Hypermodern Python Cookiecutter* are managed by *Dependabot*. When newer versions of dependencies become available, Dependabot updates the pyproject.toml and poetry.lock files and submits a pull request.

2.6.2 Installing the package for development

Poetry manages a virtual environment for your project, which contains your package, its core dependencies, and the development dependencies. All dependencies are kept at the versions specified by the lock file.

Note: A virtual environment gives your project an isolated runtime environment, consisting of a specific Python version and an independent set of installed Python packages. This way, the dependencies of your current project do not interfere with the system-wide Python installation, or other projects you're working on.

You can install your package and its dependencies into Poetry's virtual environment using the command poetry install.

```
$ poetry install
```

This command performs a so-called editable install of your package: Instead of building and installing a distribution package, it creates a special .egg-link file that links to your local source code. This means that code edits are directly visible in the environment without the need to reinstall your package.

Installing your package implicitly creates the virtual environment if it does not exist yet, using the currently active Python interpreter, or the first one found which satisfies the Python versions supported by your project.

2.6. Using Poetry 17

2.6.3 Managing environments

You can create environments explicitly with the poetry env command, specifying the desired Python version. This allows you to create an environment for every Python version supported by your project, and easily switch between them:

```
$ poetry env use 3.6
$ poetry env use 3.7
$ poetry env use 3.8
```

Only one Poetry environment can be active at any time. Note that 3.8 comes last, to ensure that the current Python release is the active environment. Install your package with poetry install into each environment after creating it.

Use the command poetry env list to list the available environments:

```
$ poetry env list
```

Use the command poetry env remove to remove an environment:

```
$ poetry env remove <version>
```

Use the command poetry env info to show information about the active environment:

```
$ poetry env info
```

2.6.4 Running commands

You can run an interactive Python session inside the active environment using the command poetry run:

```
$ poetry run python
```

The same command allows you to invoke the command-line interface of your project:

```
$ poetry run
```

You can also run developer tools, such as pytest:

```
$ poetry run pytest
```

While it is handy to have developer tools available in the Poetry environment, it is usually recommended to run these using Nox, as described in the section *Using Nox*.

2.6.5 Building and distributing the package

Note: With the *Hypermodern Python Cookiecutter*, building and distributing your package is taken care of by GitHub Actions when you publish a GitHub Release. For more information, see the section *The Release workflow*.

This section gives a short overview of how you can build and distribute your package from the command line, using the following Poetry commands:

```
$ poetry build
$ poetry publish
```

Building the package is done with the python build command, which generates *distribution packages* in the dist directory of your project. These are compressed archives that an end-user can download and install on their system. They come in two flavours: source (or *sdist*) archives, and binary packages in the wheel format.

Publishing the package is done with the python publish command, which uploads the distribution packages to your account on PyPI, the official Python package registry.

2.6.6 Installing the package

Once your package is on PyPI, others can install it with pip, pipx, or Poetry:

```
$ pip install <project>
$ pipx install <project>
$ poetry add <project>
```

While pip is the workhorse of the Python packaging ecosystem, you should use higher-level tools to install your package:

- If the package is an application, install it with pipx.
- If the package is a library, install it with poetry add in other projects.

The primary benefit of these installation methods is that your package is installed into an isolated environment, without polluting the system environment, or the environments of other applications. This way, applications can use specific versions of their direct and indirect dependencies, without getting in each other's way.

If the other project is not managed by Poetry, use whatever package manager the other project uses. You can always install your project into a virtual environment with plain pip.

2.7 Using Nox

Nox automates testing in multiple Python environments. Like its older sibling tox, Nox makes it easy to run any kind of job in an isolated environment, with only those dependencies installed that the job needs.

Nox sessions are defined in a Python file named noxfile.py and located in the project directory. They consist of a virtual environment and a set of commands to run in that environment.

While Poetry environments allow you to interact with your package during development, Nox environments are used to run developer tools in a reliable and repeatable way across Python versions.

Most sessions are run with every supported Python version. Other sessions are only run with the current stable Python version, for example the session used to build the documentation.

2.7.1 Running sessions

If you invoke Nox by itself, it will run the full test suite:

```
$ nox
```

This includes unit tests, linters, and type checkers, but excludes sessions like that for building documentation. The list of sessions run by default can be configured by editing nox.options.sessions in noxfile.py.

You can also run a specific Nox session, using the --session option. For example, build the documentation like this:

2.7. Using Nox 19

```
$ nox --session=docs
```

Print a list of the available Nox sessions using the --list-sessions option:

```
$ nox --list-sessions
```

Nox creates virtual environments from scratch on each invocation. You can speed things up by passing the -reuse-existing-virtualenvs option, or the equivalent short option -r. For example, the following may be more practical during development (this will only run unit tests on the current Python release):

```
$ nox -rs tests-3.8
```

2.7.2 Overview of Nox sessions

The following table gives an overview of the available Nox sessions:

Session	Description	Python	Default
docs	Build Sphinx documentation	3.8	
туру	Type-check with mypy	3.63.8	√
pre-commit	Lint with pre-commit	3.63.8	✓
safety	Scan dependencies with Safety	3.8	√
tests	Run tests with pytest	3.63.8	√
typeguard	Type-check with Typeguard	3.63.8	
xdoctest	Run examples with xdoctest	3.63.8	

Table 11: Nox sessions

2.7.3 The docs session

Build the documentation using the Nox session docs:

```
$ nox --session=docs
```

The docs session runs the command sphinx-build to generate the HTML documentation from the Sphinx directory.

In interactive mode—such as when invoking Nox from a terminal—sphinx-autobuild is used instead. This tool has several advantages when you are editing the documentation files:

- It rebuilds the documentation whenever a change is detected.
- It spins up a web server with live reloading.
- It opens the location of the web server in your browser.

Use the -- separator to pass additional options to either tool. For example, to treat warnings as errors and run in nit-picky mode:

```
$ nox --session=docs -- -W -n docs docs/_build
```

This Nox session always runs with the current major release of Python.

2.7.4 The mypy session

mypy is the pioneer and *de facto* reference implementation of static type checking in Python. Learn more about it in the section *Type-checking with mypy*.

Run mypy using Nox:

```
$ nox --session=mypy
```

You can also run the type checker with a specific Python version. For example, the following command runs mypy using the current stable release of Python:

```
$ nox --session=mypy-3.8
```

Use the separator — to pass additional options and arguments to mypy. For example, the following command type-checks only the __main__ module:

```
$ nox --session=mypy -- src/<package>/__main__.py
```

2.7.5 The pre-commit session

pre-commit is a multi-language linter framework and a Git hook manager. Learn more about it in the section *Linting* with pre-commit.

Run pre-commit from Nox using the pre-commit session:

```
$ nox --session=pre-commit
```

This session always runs with the current stable release of Python.

Use the separator — to pass additional options to pre-commit. For example, the following command installs the pre-commit hooks, so they run automatically on every commit you make:

```
$ nox --session=pre-commit -- install
```

2.7.6 The safety session

Safety checks the dependencies of your project for known security vulnerabilities, using a curated database of insecure Python packages. The *Hypermodern Python Cookiecutter* uses the poetry export command to convert Poetry's lock file to a requirements file, for consumption by Safety.

Run Safety using the safety session:

```
$ nox --session=safety
```

This session always runs with the current stable release of Python.

2.7. Using Nox 21

2.7.7 The tests session

Tests are written using the pytest testing framework. Learn more about it in the section *The test suite*.

Run the test suite using the Nox session tests:

```
$ nox --session=tests
```

The tests session runs the test suite against the installed code. More specifically, the session builds a wheel from your project and installs it into the Nox environment, with dependencies pinned as specified by Poetry's lock file.

You can also run the test suite with a specific Python version. For example, the following command runs the test suite using the current stable release of Python:

```
$ nox --session=tests-3.8
```

Use the separator — to pass additional options to pytest. For example, the following command runs only the test case test_main_succeeds:

```
$ nox --session=tests -- -k test_main_succeeds
```

2.7.8 The typeguard session

Typeguard is a runtime type checker and pytest plugin. It can type-check function calls during test runs via an import hook.

Typeguard checks that arguments passed to functions match the type annotations of the function parameters, and that the return value provided by the function matches the return type annotation. In the case of generator functions, Typeguard checks the yields, sends and the return value against the Generator annotation.

Run Typeguard using Nox:

```
$ nox --session=typeguard
```

The typeguard session runs the test suite with runtime type-checking enabled. It is similar to the *tests session*, with the difference that your package is instrumented by Typeguard.

You can run the session with a specific Python version. For example, the following command runs the session with the current stable release of Python:

```
$ nox --session=typeguard-3.8
```

Use the separator — to pass additional options and arguments to pytest. For example, the following command runs only tests for the main module:

```
$ nox --session=typeguard -- tests/test_main.py
```

Note: Typeguard generates a warning about missing type annotations for a Click object. This is due to the fact that <u>__main_.main</u> is wrapped by a decorator, and its type annotations only apply to the inner function, not the resulting object as seen by the test suite.

2.7.9 The xdoctest session

The xdoctest tool runs examples in your docstrings and compares the actual output to the expected output as per the docstring. This serves multiple purposes:

- The example is checked for correctness.
- You ensure that the documentation is up-to-date.
- Your codebase gets additional test coverage for free.

Run the tool using the Nox session xdoctest:

```
$ nox --session=xdoctest
```

You can also run the test suite with a specific Python version. For example, the following command runs the examples using the current stable release of Python:

```
$ nox --session=xdoctest-3.8
```

By default, the Nox session uses the all subcommand to run all examples. You can also list examples using the list subcommand, or run specific examples:

```
$ nox --session=xdoctest -- list
```

2.7.10 Using Poetry inside Nox sessions

Note: This section provides some background information about how this project template integrates Nox and Poetry. You can safely skip this section.

TL;DR When writing Nox sessions for your project,

- use install (session, "pkg") instead of session.install("pkg")
- use install package (session) instead of session.install(".")

Nox sessions can invoke Poetry like any other command, using the function nox.sessions.Session.run. Integrating Nox and Poetry in a sane way requires additional work. For this purpose, noxfile.py contains some glue code in the form of the install and install_package functions:

noxfile.install (session, *args): Install development dependencies into a Nox session using Poetry.

The noxfile.install function installs development dependencies into a Nox session, using the versions specified in Poetry's lock file. This is done by exporting the lock file in requirements.txt format, and passing it as a constraints file to pip. The function arguments are the same as those for nox.sessions.Session.install: The first argument is the Session object, and the remaining arguments are command-line arguments for pip install, typically just the package or packages to be installed.

noxfile.install_package (session): Install the package into a Nox session using Poetry.

The noxfile.install_package function installs your package into a Nox session, including the core dependencies as specified in Poetry's lock file. This is done by building a wheel from the package, and installing it using pip. Dependencies are installed in the same way as in the noxfile.install function, i.e. using a constraints file. Its only argument is the Session object from Nox.

The functions are implemented using a Poetry helper class, which encapsulates invocations of the Poetry command-line interface. The helper class has the following methods:

2.7. Using Nox 23

noxfile.Poetry.__init__(self, session) Initialize self. Instances need a session object for running
commands.

noxfile.Poetry.build(self, *args) Build the package.

noxfile.Poetry.export (self, *args) Export the lock file to requirements format.

noxfile.Poetry.version(self) Return the package version.

2.8 Linting with pre-commit

pre-commit is a multi-language linter framework and a Git hook manager. It allows you to integrate the best industry standard linters into your Git workflow, even when written in a language other than Python. Linters run in isolated environments managed by pre-commit.

2.8.1 Using pre-commit

pre-commit runs in a Nox session every time you invoke nox:

\$ nox

Run the pre-commit session explicitly like this:

\$ nox --session=pre-commit

Install pre-commit as a Git hook by running the following command:

```
$ nox --session=pre-commit -- install
```

When installed as a Git hook, pre-commit runs automatically every time you invoke git commit. The commit is aborted if any check fails. When invoked in this mode, pre-commit only runs on files staged for the commit.

Many linters support fixing offending lines automatically. When this happens, your original changes are in the staging area, while the linter fixes are in the work tree. You can accept the fixes by staging them with git add before committing again.

2.8.2 Overview of pre-commit hooks

pre-commit is configured using the file .pre-commit-config.yaml in the project directory. Please refer to the official documentation for details about the configuration file.

The Hypermodern Python Cookiecutter comes with a pre-commit configuration consisting of the following hooks:

black	Run the Black code formatter
flake8	Run the Flake8 linter
prettier	Run the Prettier code formatter
check-added-large-files	Prevent giant files from being committed
check-toml	Validate TOML files
check-yaml	Validate YAML files
end-of-file-fixer	Ensure files are terminated by a single newline
reorder-python-imports	Rewrites source to reorder python imports
trailing-whitespace	Ensure lines do not contain trailing whitespace

Table 12: pre-commit hooks

2.8.3 The Black hook

Black is the uncompromising Python code formatter. One of its greatest features is its lack of configurability. Black-ened code looks the same regardless of the project you're reading.

2.8.4 The Prettier hook

Prettier is an opinionated code formatter for many languages, including YAML, Markdown, and JavaScript. Like Black, it has few options, and the *Hypermodern Python Cookiecutter* uses none of them.

2.8.5 The Flake8 hook

Flake8 is an extensible linter framework for Python. For more details, see the section *Linting with Flake8*.

2.8.6 The reorder-python-imports hook

reorder-python-imports sorts imports in your Python code. Imports are separated into three sections, as recommended by PEP 8: standard library, third party, first party. The tool also splits from imports onto separate lines to avoid merge conflicts, and moves them after normal imports. Any duplicate imports are removed.

2.8.7 Hooks from pre-commit-hooks

The pre-commit configuration also includes several smaller hooks from the pre-commit-hooks repository.

2.9 Linting with Flake8

Flake8 is an extensible linter framework for Python, and a command-line utility to run the linters on your source code. The *Hypermodern Python Cookiecutter* integrates Flake8 via a pre-commit hook, see the section *The Flake8 hook*.

The configuration file for Flake8 and its extensions is named .flake8 and located in the project directory. For details about the configuration file, see the official reference.

The sections below describe the linters in more detail. Each section also notes any configuration settings applied by the *Hypermodern Python Cookiecutter*.

2.9.1 Overview of available plugins

Flake8 comes with a rich ecosystem of plugins. The following table lists the Flake8 plugins used by the *Hypermodern Python Cookiecutter*, and links to their lists of error codes.

Table 13: Flake8 plugins

pyflakes	Find invalid Python code	
pycodestyle	Enforce style conventions from PEP 8	E,W
pep8-naming	Enforce naming conventions from PEP 8	N
pydocstyle / flake8-docstrings	Enforce docstring conventions from PEP 257	D
flake8-rst-docstrings	Find invalid reStructuredText in docstrings	RST
flake8-bugbear	Detect bugs and design problems	В
mccabe	Limit the code complexity	С
darglint	Detect inaccurate docstrings	DAR
Bandit / flake8-bandit	Detect common security issues	S

2.9.2 pyflakes

pyflakes parses Python source files and finds invalid code. Warnings reported by this tool include syntax errors, undefined names, unused imports or variables, and more. It is included with Flake8 by default.

Error codes are prefixed by F for "flake".

2.9.3 pycodestyle

pycodestyle checks your code against the style recommendations of PEP 8, the official Python style guide. The tool detects whitespace and indentation issues, deprecated features, bare excepts, and much more. It is included with Flake8 by default.

Error codes are prefixed by W for warnings and E for errors.

The *Hypermodern Python Cookiecutter* disables the following errors and warnings for compatibility with Black and flake8-bugbear:

- E203 (whitespace before:)
- E501 (line too long)
- W503 (line break before binary operator)

2.9.4 pep8-naming

pep8-naming enforces the naming conventions from PEP 8. Examples are the use of camel case for the names of classes, the use of lowercase for the names of functions, arguments and variables, or the convention to name the first argument of methods self.

Error codes are prefixed by N for "naming".

2.9.5 pydocstyle and flake8-docstrings

pydocstyle checks that docstrings comply with the recommendations of PEP 257 and a configurable style convention. It is integrated with Flake8 via the flake8-docstrings extension. Warnings range from missing docstrings to issues with whitespace, quoting, and docstring content.

Error codes are prefixed by D for "docstring".

The *Hypermodern Python Cookiecutter* selects the recommendations of the Google styleguide. Here is an example of a function documented in Google style:

```
def add(first: int, second: int) -> int:
    """Add two integers.

Args:
    first: The first argument.
    second: The second argument.

Returns:
    The sum of the arguments.
"""
```

2.9.6 flake8-rst-docstrings

flake8-rst-docstrings validates docstring markup as reStructuredText. Docstrings must be valid reStructuredText because they are used by Sphinx to generate the API reference.

Error codes are prefixed by RST for "reStructuredText", and group issues into numerical blocks, by their severity and origin.

2.9.7 flake8-bugbear

flake8-bugbear detects bugs and design problems. The warnings are more opinionated than those of pyflakes or pycodestyle. For example, the plugin detects Python 2 constructs which have been removed in Python 3, and likely bugs such as function arguments defaulting to empty lists or dictionaries.

Error codes are prefixed by B for "bugbear".

The *Hypermodern Python Cookiecutter* also enables Bugbear's B9 warnings, which are disabled by default. In particular, B950 checks the maximum line length like pycodestyle's E501, but with a tolerance margin of 10%. This soft limit is set to 80 characters, which is the value used by the Black code formatter.

2.9.8 mccabe

mccabe checks the code complexity of your Python package against a configured limit. The tool is included with Flake8.

Error codes are prefixed by C for "complexity".

The Hypermodern Python Cookiecutter limits code complexity to a value of 10.

2.9.9 darglint

darglint checks that doestring descriptions match function definitions. The tool has its own configuration file, named .darglint.

Error codes are prefixed by DAR for "darglint".

The Hypermodern Python Cookiecutter allows one-line docstrings without function signatures. Multi-line docstrings must specify the function signatures completely and correctly, using Google docstring style.

2.9.10 Bandit

Bandit is a tool designed to find common security issues in Python code, and integrated via the flake8-bandit extension.

Error codes are prefixed by S for "security". (The prefix B for "bandit" is used when Bandit is run as a stand-alone tool.)

The Hypermodern Python Cookiecutter disables S101 (use of assert) for the test suite, as pytest uses assertions to verify expectations in tests.

2.10 Code coverage with Coverage.py

Test coverage is a measure of the degree to which the source code of your program is executed while running its test suite. The *Hypermodern Python Cookiecutter* requires full test coverage.

Code coverage is measured using Coverage.py during the *tests session*. When the test suite completes, a detailed coverage report is printed to the terminal. If the total coverage is below 100%, the test session fails.

Coverage.py is configured using the pyproject.toml configuration file, in the tool.coverage table. The configuration informs the tool about your package name and source tree layout. It also enables branch analysis and the display of line numbers for missing coverage, and specifies the target coverage percentage.

During continuous integration, coverage data is uploaded to the Codecov reporting service. For details, see the sections about *Codecov* and *The Coverage workflow*.

2.11 Type-checking with mypy

Note: Type annotations, first introduced in Python 3.5, are a way to annotate functions and variables with types. With appropriate tooling, they can make your programs easier to understand, debug, and maintain.

Type-checking refers to the practice of verifying the type correctness of a program, using type annotations and type inference. There are two kinds of type checkers:

- Static type checkers verify the type correctness of your program without executing it, using static analysis.
- Runtime type checkers find type errors by instrumenting your code to type-check arguments and return values in function calls. This is particularly useful during the execution of unit tests.

There is also an increasing number of libraries that leverage type annotations at runtime. For example, you can use type annotations to generate serialization schemas or command-line parsers.

mypy is the pioneer and *de facto* reference implementation of static type checking in Python. Invoke mypy via Nox, as explained in the section *The mypy session*.

Configure mypy using the mypy.ini configuration file in the project directory. For details about supported configuration options, see the official reference.

The *Hypermodern Python Cookiecutter* enables several configuration options which are off by default. The following options are enabled for strictness:

- check_untyped_defs
- disallow_any_generics
- disallow incomplete defs
- disallow_subclassing_any
- disallow_untyped_calls
- disallow_untyped_decorators
- disallow_untyped_defs
- no_implicit_optional
- no_implicit_reexport
- strict_equality
- warn_redundant_casts
- warn_return_any
- warn_unused_configs
- warn_unused_ignores

The ignore_missing_imports option is used to disable import errors for selected packages where type information is not yet available.

The following options are enabled for enhanced output:

- pretty
- show_column_numbers
- show_error_codes
- show_error_context

2.12 External services

Your GitHub repository can be integrated with several external services for continuous integration and delivery. This section describes these external services, what they do, and how to set them up for your repository.

2.12.1 PyPI

PyPI is the official Python Package Index. Uploading your package to PyPI allows others to download and install it to their system.

Follow these steps to set up PyPI for your repository:

- 1. Sign up at PyPI.
- 2. Go to the Account Settings on PyPI, generate an API token, and copy it.
- 3. Go to the repository settings on GitHub, and add a secret named PYPI_TOKEN with the token you just copied.

2.12. External services

PyPI is integrated with your repository via the Release workflow.

2.12.2 TestPyPI

TestPyPI is a test instance of the Python package registry. It allows you to check your release before uploading it to the real index.

Follow these steps to set up TestPyPI for your repository:

- 1. Sign up at TestPyPI.
- 2. Go to the Account Settings on TestPyPI, generate an API token, and copy it.
- 3. Go to the repository settings on GitHub, and add a secret named TEST_PYPI_TOKEN with the token you just copied.

TestPyPI is integrated with your repository via the TestPyPI workflow.

2.12.3 Codecov

Codecov is a reporting service for code coverage.

Follow these steps to set up Codecov for your repository:

- 1. Sign up at Codecov.
- 2. Install their GitHub app.

The configuration is included in the repository, in the file codecov.yml.

Codecov integrates with your repository via its GitHub app. The Coverage workflow uploads the coverage data.

2.12.4 Dependabot

Dependabot creates pull requests with automated dependency updates.

Follow these steps to set up Dependabot for your repository:

- 1. Sign up at Dependabot.
- 2. Install their GitHub app.

The configuration is included in the repository, in the file .dependabot/config.yml.

Dependabot integrates with your repository via its GitHub app.

It manages the following dependencies:

Type of dependency	Managed files	See also
Python		Managing dependencies
	<pre>pyproject.toml poetry.lock</pre>	
Python	docs/requirements.txt	Read the Docs
Python	.github/workflows/	Constraints file
	constraints.txt	
GitHub Action	.github/workflows/*.yml	GitHub Actions workflows

2.12.5 Read the Docs

Read the Docs automates the building, versioning, and hosting of documentation.

Follow these steps to set up Read the Docs for your repository:

- 1. Sign up at Read the Docs.
- 2. Import your GitHub repository, using the button Import a Project.
- 3. Install the GitHub webhook, using the button *Add integration* on the *Integrations* tab in the *Admin* section of your project on Read the Docs.

Read the Docs automatically starts building your documentation, and will continue to do so when you push to master or make a release. Your documentation now has a public URL like this:

https:////project>.readthedocs.io/

The configuration for Read the Docs is included in the repository, in the file .readthedocs.yml. The *Hypermodern Python Cookiecutter* configures Read the Docs to build and install the package with Poetry, using a so-called PEP 517-build.

Build dependencies for the documentation are installed using a requirements file located at docs/requirements. txt. Read the Docs currently does not support installing development dependencies using Poetry's lock file. For the sake of brevity and maintainability, only direct dependencies are included.

Note: The requirements file is managed by *Dependabot*. When newer versions of the build dependencies become available, Dependabot updates the requirements file and submits a pull request. When adding or removing Sphinx extensions using Poetry, don't forget to update the requirements file as well.

2.13 GitHub Actions workflows

The Hypermodern Python Cookiecutter uses GitHub Actions to implement continuous integration and delivery. With GitHub Actions, you define so-called workflows using YAML files located in the .github/workflows directory.

A *workflow* is an automated process consisting of one or many jobs, each of which executes a series of steps. Workflows are triggered by events, for example when a commit is pushed or when a release is published. You can learn more about the workflow language and its supported keywords in the official reference.

Note: Real-time logs for workflow runs are available from the *Actions* tab in your GitHub repository.

2.13.1 Overview of workflows

The Hypermodern Python Cookiecutter defines the following workflows:

Table 14: GitHub Actions workflows

Workflow	File	Description	Trigger
Tests	tests.yml	Run the test suite with Nox	Push, PR
Coverage	coverage.yml	Upload coverage data to Codecov	Push, PR
Build documentation	docs.yml	Build the documentation with Sphinx	Push, PR
Release Drafter	release-drafter.yml	Update the draft GitHub Release	Push (master)
Release	release.yml	Upload the package to PyPI	GitHub Release
TestPyPI	test-pypi.yml	Upload the package to TestPyPI	Push (master)

Note: GitHub Actions used by these workflows are managed by *Dependabot*. When newer versions of GitHub Actions become available, Dependabot updates the workflows that use them and submits a pull request.

2.13.2 Secrets

Some workflows use tokens to access external services. The following table lists the required tokens, which need to be stored as secrets in the repository settings on GitHub:

Table 15: Secrets

PYPI_TOKEN	PyPI API token
TEST_PYPI_TOKEN	TestPyPI API token

You can generate these API tokens from your account settings on PyPI and TestPyPI.

2.13.3 Constraints file

GitHub Actions workflows install the following tools:

- pip
- Poetry
- Nox

These dependencies are pinned using a constraints file located in .github/workflow/constraints.txt.

Note: The constraints file is managed by *Dependabot*. When newer versions of the tools become available, Dependabot updates the constraints file and submits a pull request.

2.13.4 The Tests workflow

The Tests workflow executes the test suite using Nox.

The workflow is triggered on every push to the GitHub repository, and when a pull request is opened or receives new commits. It consists of a job for each supported Python version, executed on the latest supported runners for Ubuntu, Windows, and macOS.

The workflow uses the following GitHub Actions:

· actions/checkout for checking out the Git repository

- actions/setup-python for setting up the Python interpreter
- · actions/cache for caching pre-commit environments

The workflow is defined in .github/workflows/tests.yml.

2.13.5 The Coverage workflow

The Coverage workflow uploads coverage data to Codecov.

The workflow is triggered on every push to the GitHub repository, and when a pull request is opened or receives new commits. It executes the *tests session* to generate a coverage report in cobertura XML format. This coverage report is then uploaded to Codecov.

The workflow uses the following GitHub Actions:

- actions/checkout for checking out the Git repository
- actions/setup-python for setting up the Python interpreter
- codecov/codecov-action for uploading to Codecov

The workflow runs with the current stable release of Python, using the latest supported Ubuntu runner.

It is defined in .github/workflows/coverage.yml.

2.13.6 The Docs workflow

The Docs workflow builds the Sphinx documentation using the *docs* Nox session, and uploads the generated files as a workflow artifact.

This is done solely to ensure that the build process is functional. The actual project documentation is built independently on Read the Docs.

The workflow is triggered on every push to the GitHub repository, and when a pull request is opened or receives new commits.

The workflow uses the following GitHub Actions:

- · actions/checkout for checking out the Git repository
- · actions/setup-python for setting up the Python interpreter
- actions/upload-artifact to upload the generated documentation

The workflow runs with the current stable release of Python, using the latest supported Ubuntu runner.

It is defined in .github/workflows/docs.yml.

2.13.7 The Release Drafter workflow

The Release Drafter workflow maintains a draft for the next GitHub Release.

The workflow is triggered on every push to the master branch. It includes details from every pull request merged into master since the last release. The workflow uses the Release Drafter GitHub Action.

The *Hypermodern Python Cookiecutter* groups pull requests by type, using GitHub labels. The following table shows the section headings and corresponding labels:

Pull Request Label	Section in Release Notes
breaking	Breaking Changes
enhancement	Features
removal	Removals and Deprecations
bug	Fixes
performance	Performance
testing	Testing
ci	Continuous Integration
documentation	Documentation
refactoring	Refactoring
style	Style
dependencies	Dependencies

GitHub creates the bug, enhancement, and documentation labels for you. Dependabot creates the dependencies label. Create the remaining labels on the *Issues* tab of your GitHub repository, when you need them.

The workflow is defined in .github/workflows/release-drafter.yml. The configuration file is located in .github/release-drafter.yml.

2.13.8 The Release workflow

The Release workflow publishes your package on PyPI, the Python Package Index.

The workflow is triggered when a GitHub Release is published. It checks that the test suite passes, builds the package using Poetry, and uploads it using the pypa/gh-action-pypi-publish action. This workflow uses the PYPI_TOKEN secret.

The workflow is defined in .github/workflows/release.yml.

2.13.9 The TestPyPI workflow

The TestPyPI workflow publishes your package on TestPyPI, a test instance of the Python Package Index.

The workflow is triggered on every push to the master branch. It bumps the version number to a developmental prerelease, builds the package using Poetry, and uploads it using the pypa/gh-action-pypi-publish action. This workflow uses the TEST_PYPI_TOKEN secret.

The workflow is defined in .github/workflows/test-pypi.yml.

2.14 Tutorials

First, make sure you have all the *requirements* installed.

2.14.1 How to test your project

Run the test suite using *Nox*:

```
$ nox -r
```

2.14.2 How to run your code

First, install the project and its dependencies to the Poetry environment:

```
$ poetry install
```

Run an interactive session in the environment:

```
$ poetry run python
```

Invoke the command-line interface of your package:

```
$ poetry run project>
```

2.14.3 How to make code changes

- 1. Run the tests, *as explained above*. All tests should pass.
- 2. Add a failing test *under the tests directory*. Run the tests again to verify that your test fails.
- 3. Make your changes to the package, *under the src directory*. Run the tests to verify that all tests pass again.

2.14.4 How to push code changes

Create a branch for your changes:

```
$ git switch --create my-topic-branch master
```

Create a series of small, single-purpose commits:

```
$ git add <files>
$ git commit
```

Push your branch to GitHub:

```
$ git push --set-upstream origin my-topic-branch
```

The push triggers the following automated steps:

- The test suite runs against your branch.
- Coverage data is uploaded to Codecov.
- The documentation is built from your branch.

2.14. Tutorials 35

2.14.5 How to open a pull request

Open a pull request for your branch on GitHub:

- 1. Select your branch from the *Branch* menu.
- 2. Click New pull request.
- 3. Enter the title for the pull request.
- 4. Enter a description for the pull request.
- 5. Apply a label identifying the type of change
- 6. Click Create pull request.

Release notes are pre-filled with the titles of merged pull requests.

2.14.6 How to accept a pull request

If all checks are marked as passed, merge the pull request using the squash-merge strategy (recommended):

- 1. Click **Squash and Merge**. (Select this option from the dropdown menu of the merge button, if it is not shown.)
- 2. Click Confirm squash and merge.
- 3. Click Delete branch.

This triggers the following automated steps:

- The test suite runs against the master branch.
- Coverage data is uploaded to Codecov.
- The documentation is built from the master branch.
- The draft GitHub Release is updated.
- A pre-release of the package is uploaded to TestPyPI.
- Read the Docs rebuilds the *latest* version of the documentation.

In your local repository, update the master branch:

```
$ git switch master
$ git pull origin master
```

Optionally, remove the merged topic branch from the local repository as well:

```
$ git remote prune origin
$ git branch --delete --force my-topic-branch
```

The original commits remain accessible from the pull request (Commits tab).

2.14.7 How to make a release

Before making a release, go through the following checklist:

- The master branch passes all checks.
- The development release on TestPyPI looks good.
- · All pull requests for the release have been merged.

Making a release is a two-step process:

- 1. Bump the version using poetry version. (Commit and push.)
- 2. Publish a GitHub Release.

When bumping the version, adhere to Semantic Versioning and PEP 440. The individual steps for bumping the version are:

```
$ git switch master
$ poetry version <version>
$ git commit --message="<project> <version>" pyproject.toml
$ git push origin master
```

If you want the Git tag to be annotated or signed, add the following optional steps:

```
$ git tag --message=""ct> <version>" v<version>
$ git push origin v<version>
```

To publish the release, locate the draft release on the *Releases* tab of the GitHub repository, and follow these steps:

- 1. Click **Edit** next to the draft release.
- 2. Enter a tag of the form v<version>, using the new project version.
- 3. Enter the release title, e.g. <version>.
- 4. Edit the release description, if required.
- 5. Click Publish Release.

After publishing the release, the following automated steps are triggered:

- The Git tag is applied to the repository.
- The package is uploaded to PyPI.
- Read the Docs builds a new stable version of the documentation.

Update your local repository:

```
$ git switch master
$ git pull origin master v<version>
```

2.14. Tutorials 37

2.15 The Hypermodern Python blog

The project setup is described in detail in the Hypermodern Python article series:

- Chapter 1: Setup
- Chapter 2: Testing
- Chapter 3: Linting
- Chapter 4: Typing
- Chapter 5: Documentation
- Chapter 6: CI/CD

You can also read the articles on this blog.

CONTRIBUTOR GUIDE

Thank you for your interest in improving the Hypermodern Python Cookiecutter. This project is open-source under the MIT license and welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

- Source Code
- Documentation
- · Issue Tracker
- · Code of Conduct

3.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

- Which operating system and Python version are you using?
- Which version of this project are you using?
- What did you do?
- What did you expect to see?
- What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

3.2 How to request a feature

Request features on the Issue Tracker.

3.3 How to set up your development environment

You need Python 3.6+ and the following tools:

- Cookiecutter
- Poetry
- Nox

Fork the repository on GitHub, and clone the fork to your local machine. You can now generate a project from your development version:

```
$ cookiecutter path/to/cookiecutter-hypermodern-python
```

You may also want to push your generated project to GitHub, and set up continuous integration.

3.4 How to test the project

Please refer to the User Guide for instructions on how to run the test suite locally.

3.5 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

- The Nox test suite must pass without errors and warnings.
- Include unit tests. This project maintains 100% code coverage.
- If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

You can ensure that your changes adhere to the code style by reformatting with Black:

```
$ nox --session=black
```

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the owners and validate your approach.

3.6 How to accept changes

You need to be a project maintainer to accept changes.

Before accepting a pull request, go through the following checklist:

- The PR must pass all checks.
- The PR must have a descriptive title.
- The PR should be labelled with the kind of change (see below).

Release notes are pre-filled with titles and authors of merged pull requests. Labels group the pull requests into sections. The following list shows the available sections, with associated labels in parentheses:

- Breaking Changes (breaking)
- Features (enhancement)
- Removals and Deprecations (removal)
- Fixes (bug)
- Performance (performance)
- Testing (testing)
- Continuous Integration (ci)
- Documentation (documentation)
- Refactoring (refactoring)
- Style (style)
- Dependencies (dependencies)

To merge the pull request, follow these steps:

- 1. Click **Squash and Merge**. (Select this option from the dropdown menu of the merge button, if it is not shown.)
- 2. Click Confirm squash and merge.
- 3. Click Delete branch.

3.7 How to make a release

You need to be a project maintainer to make a release.

Before making a release, go through the following checklist:

- All pull requests for the release have been merged.
- The master branch passes all checks.

Releases are made by publishing a GitHub Release. A draft release is being maintained based on merged pull requests. To publish the release, follow these steps:

- 1. Click Edit next to the draft release.
- 2. Enter a tag with the new version.
- 3. Enter the release title, also the new version.
- 4. Edit the release description, if required.
- 5. Click Publish Release.

Version numbers adhere to Calendar Versioning, of the form YYYY.MM.DD.

After publishing the release, the following automated steps are triggered:

- The Git tag is applied to the repository.
- Read the Docs builds a new stable version of the documentation.

Hypermodern Python (Cookieculler
----------------------	--------------

FOUR

CONTRIBUTORS

4.1 Development Lead

• Claudio Jolowicz (@cjolowicz)

4.2 Pull Requests and Patches

- Paulo S. Costa (@pscosta5)
- Thiago C. D'Ávila (@staticdev)

4.3 Bug Reports and Suggestions

CONTRIBUTOR COVENANT CODE OF CONDUCT

5.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

5.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

- Demonstrating empathy and kindness toward other people
- Being respectful of differing opinions, viewpoints, and experiences
- Giving and gracefully accepting constructive feedback
- · Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
- Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

- The use of sexualized language or imagery, and sexual attention or advances of any kind
- Trolling, insulting or derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others' private information, such as a physical or email address, without their explicit permission
- Other conduct which could reasonably be considered inappropriate in a professional setting

5.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

5.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

5.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at mail@claudiojolowicz.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

5.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

5.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

5.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

5.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

5.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

5.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla's code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

5.7. Attribution 47

SIX

MIT LICENSE

Copyright © 2020 Claudio Jolowicz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.

Cookiecutter template for a Python package based on the Hypermodern Python article series.

SEVEN

USAGE

\$ cookiecutter gh:cjolowicz/cookiecutter-hypermodern-python \
 --checkout="2020.5.15"

52 Chapter 7. Usage

EIGHT

FEATURES

- Packaging and dependency management with Poetry
- Test automation with Nox
- Linting with pre-commit and Flake8
- Continuous integration with GitHub Actions
- Documentation with Sphinx and Read the Docs
- Automated uploads to PyPI and TestPyPI
- Automated release notes with Release Drafter
- Automated dependency updates with Dependabot
- Code formatting with Black and Prettier
- · Testing with pytest
- Code coverage with Coverage.py
- Coverage reporting with Codecov
- Command-line interface with Click
- Static type-checking with mypy
- Runtime type-checking with Typeguard
- Security audit with Bandit and Safety
- Check documentation examples with xdoctest
- Generate API documentation with autodoc and napoleon

The template supports Python 3.6, 3.7, and 3.8.

54 Chapter 8. Features

NINE

FAQ

What is this project about?

The mission of this project is to enable current best practices through modern Python tooling.

What makes this project different from other Python templates?

This is a general-purpose template for Python libraries and applications.

Our goals are:

- · Focus on simplicity and minimalism
- Promote code quality through automation
- Provide reliable and repeatable processes

The project template is centered around the following tools:

- Poetry for packaging and dependency management
- Nox for automation of checks and other development tasks
- GitHub Actions for continuous integration and delivery

Why is this Python template called "hypermodern"?

Hypermodernism is a school of chess that dates back to more than a century ago. If this setup ever goes out of fashion, I can pretend it was my secret plan from the start. All images on the associated blog show past visions of the future.